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A signi�cant effort has been spent on building behavioral models of playing
games with an eye to explaining laboratory data with human subjects. Both the
theory and experiments have been mostly focused on one-shot games with small
strategy spaces. Examples include the prisoners� dilemma, matching pennies,
chicken, etc. But there is another class of games that is interesting, at least to

We study three learning rules (reinforcement learning, experience weighted
attraction learning, and individual evolutionary learning) and how they per-
form in three different Groves-Ledyard mechanisms. We are interested in
how well these learning rules duplicate human behavior in repeated games
with a continuum of strategies. We �nd that reinforcement learning does
not do well, individual evolutionary learning does signi�cantly better, as
does experience weighted attraction but only if given a small discretized
strategy space,. We identify four main features a learning rule should have
in order to stack up against humans in a minimal competency test. Those
four are: (1) the use of hypotheticals to create history, (2) the ability to
focus only on what is important, (3) the ability to forget history when it is
no longer important, and (4) the ability to try new things.
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We acknowledge up front that neither RL nor EWA were designed to describe behavior in
repeated games. They were also not designed to handle games with a continuum of strategies.
But the principles of behavior should be independent of the game being played and pushing the
boundaries can tell us whether the basics are right or not.

those interested in mechanism design. These are repeated games with a one-
dimensional continuum as the strategy space. There has been relatively little
done in the context of these larger games. The question we address in this
paper is whether the learning models that perform well for �small games� scale
to �larger games.�

We believe the most natural way to scale the study of learning algorithms
to environments with large strategy spaces is to begin with a one-dimensional
strategy space. The Groves-Ledyard mechanisms in public goods environments
creates exactly this type of game. We say �mechanisms� because there is really a
class of mechanisms parameterized by a �punishment� parameter. As this para-
meter changes, the Nash Equilibrium outcome stays the same but the dynamics
appear to change. Thus the learning problem, �nding the Nash Equilibrium,
changes even if the target doesn�t. A theory that works for one value of the pa-
rameter should, one would hope, work for all. A second way we scale is to look
at repeated play. Learning is not only about the game itself but also about one�s
opponents. But repeated play introduces new intertemporal strategies such as
teaching and punishing. We do try to minimize the �repeated game effects� by
choosing games for which the Nash Equilibria are Pareto-Optimal.An additional
bene�t of using this class of games for our study is that there are laboratory
data for this class.

For this paper we look at three models of learning: Reinforcement Learn-
ing (RL), Experience Weighted Attraction Learning (EWA), and the Individual
Evolutionary Learning (IEL) . Two of these are very well known but for com-
pleteness we will provide a brief description of each. In RL players choose
strategies that have done well in the past with higher probability in the future.
Strategies that achieve higher returns when used are �reinforced� and played
with a higher probability. In EWA, each strategy has an based on
the possible payoff it might have earned in the past had it been played. Strate-
gies with higher attractions have higher probabilities of being selected. One of
the primary differences between RL and EWA is the latter�s use of hypothetical
computations to quickly evaluate all strategies. RL only uses actual payoffs and
thus can only evaluate strategies actually played. This difference does not mat-
ter much when there are two strategies; it is fatal to RL when there are a lot.
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1.1. Some of the past literature

Recognizing that getting this close is not necessarily �convergent behavior� since strategies
could rebound away, we also look at what percent of the next 100 choices are also within 0.1 of
the Nash Equilibrium. If that number is large, we can then think of this as convergence.

The model of Individual Evolutionary Learning adds a new dimension to RL
and EWA by allowing agents to vary their active strategy set in response to ex-
perience (as in RL), to hypothetical evaluations (as in EWA), and, occasionally,
to pure random events (experiments). What has been �learned� by an agent at
any time is summarized not in attraction weights but in a set of active strategies.
Strategies that have been or would have been successful will have more copies
in the active strategy set. If a strategy has a lot of copies in the active set it will
be chosen with a higher probability. The primary difference between IEL and
EWA seems to be that IEL discards strategies that aren�t potentially pro�table
and thus does not waste time or lose payoffs re-testing unpro�table options.

To evaluate each of the three learning models we will look at their perfor-
mance in three Groves-Ledyard mechanisms. We will focus on what we consider
to be a minimal competency test. That is, we set a standard of rejection as
opposed to one of acceptance. As we simulate the behavior, we compute the
average time it takes to converge to the pure strategy Nash Equilibrium. We
ask �is it similar to that exhibited by humans?� Our convergence criterion
is challenging. We ask that all players� strategies be within 0.1 of the Nash
Equilibrium . This is a standard human subjects attain pretty quickly in many
experiments. We should expect our models of them to do as well.

One problem we face in doing this test is adapting RL and EWA to the larger
strategy space. To do this, we discretize the continuum into a set S. The more
elements in S, the more likely the Nash Equilibrium strategies will also be in
the set. But the larger is S, the further away we will be from the small set ideal
of the learning rules. We will see how this tension plays out below.

We turn now to the study. We begin with a literature review, followed by a
review of the Groves-Ledyard mechanisms in this incarnation and of the three
learning rules. We then present the results of our study and conclude with some
observations and conjectures about the properties of good learning models.

A number of models of individual learning have been developed over the past
decade. (For an excellent overview, see Camerer, 2003). Much of the research
has been done in the context of one-shot games with small strategy spaces such
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as 2 by 2 or 3 by 3 games. The performance of the models has generally been
evaluated by using standard econometric methods (maximum likelihood or grid
search) to �t the models to experimental data.

Despite of a large number of applications of the models of individual learning
to games with a small strategy space, there have been only a few studies ex-
amining these models in environments in which there are large strategy spaces
or in environments in which there is repeated interaction among the agents.
Two studies, Chan and Tang (1998) and Arifovic and Ledyard (2003), have
been done in the framework of repeated use of a Groves-Ledyard mechanism for
the provision of public goods in an environment with quasi-linear utility func-
tions. This seems to be a particularly good context as a �rst place to study
large strategy spaces and repeated play. It is a large strategy space world, since
the mechanism requires the strategy space to be a closed convex subset of the
real line and not a �nite set. It is a �simple� repeated play world, because the
Nash-Equilibrium outcome of the stage game is Pareto-optimal. This signif-
icantly reduces repeated game pressures to deviate from Nash Equilibria and
allows one to focus on learning as opposed to more complicated coordination,
punishment, and teaching strategies.

Chan and Tang (1998) study two major families of learning models (a vari-
ant of RL and a Generalized Fictitious Play model). They use the data from
the experiments with human subjects to estimate the models� parameter values
(using grid search) and evaluate their goodness of �t. They do not perform any
out-of-sample tests in order to evaluate the performance of these models. The
model that performed the best in their study was RL.

Arifovic and Ledyard (2003) study a model of Individual Evolutionary Learn-
ing. Their method for evaluating the performance of the model is different from
the above mentioned methods. They examine, in Monte Carlo simulations, the
time it takes the model to converge to Nash equilibrium for a wide range of the
values of the mechanism�s free parameter.

We are interested in ultimately �nding learning rules whose parameters can
be �xed ex ante across a very large number of games. This is contrary to much
of the current literature where parameters are estimated for a limited set of
games and, sometimes, even adjusted for different samples of humans. There
are exceptions such as the work by Josephson (2001) and Arifovic et al. (2003).

Josephson studies the evolutionary stability of learning rules using numerical
analysis. He studies the stability of a class of learning rules that can be rep-
resented by EWA (Camerer and Ho, 1999) in four symmetric, 2 player games.

4



3

3

i 2i i i

i

1

( ) = +

1 ( + )

mechanism

∈ { }

�

∈ { } ∈ �∞ ∞

X
i i , . . . ,N ,

V X A X B X � .

z
z z

M
i i , . . . ,N m ,

1.2. Groves-Ledyard Mechanism as a �testbed�

1.2.1. The environment

1.2.2. The mechanisms

This section is intended mainly as a reminder to the reader of the structure of the problem.
For more details, see Groves and Ledyard (1977), Chen and Plott (1996), or Arifovic and Ledyard
(2003).

The results of the Monte Carlo simulations show that belief learning is the only
learning rule which is evolutionary stable in almost all cases, whereas RL is
unstable in almost all cases. In addition, in certain games, the stability of inter-
mediate learning rules hinges critically on the parameters of the model and the
relative payoffs. Arifovic et al. (2003) set up a Turing tournament in which the
performance of models of individual learning in a number of 2 by 2 and 3 by 3
games is evaluated using machine algorithms designed to differentiate between
data generated by human behavior in the controlled laboratory environment and
the behavior generated by models of learning.

We begin with a very brief review of the Groves-Ledyard (GL) mechanism in
quasi-linear environments. We look at both the theory and at some of the
experimental evidence.

We focus on environments in which agents have quasi-linear, quadratic prefer-
ences for a public good. An agent�s preference for an amount of the public
good is de�ned for that agent , as

The public good is produced using a constant returns to scale production func-
tion with a per unit cost of production, . Thus the total cost of production is
equal to where is the total amount of public good that is provided.

Agents send messages to a (really a central processor or �the gov-
ernment�) indicating their demand for the public good. Then, given the vector
of messages from the agents, the mechanism computes a level of public good
and a tax payment for each agent. Formally we let the set be the language or
message space. Each agent , , selects an element
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1.2.3. One-shot play
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In more general environments, there can be multiple Pareto-optimal allocations. A Nash
equilibrium of the Groves-Ledyard mechanism will select one of these.

where is interpreted to be the agent�s message to the government. The total
amount of public good produced is given by:

The message sent by agent , , can be thought of as repre-
senting that agent�s requested addition to the total amount of public good (given
the proposed additions of other agents). Agents are free to misrepresent their
requests for the public good and, if this were a voluntary mechanism, we would
expect them to do so. However, the tax and allocation rules of the mechanism
are speci�cally designed so that in Nash equilibrium it is in each agent�s indi-
vidual self-interest to reveal her true incremental demand for the public good.
The GL mechanisms, parameterized by use the following tax scheme:

where is the amount of tax paid by agent , is an arbitrary free parameter

greater than , is the mean value of messages of all the other

agents, and is the squared deviation from this mean. We call

the GL outcome function. The payoff of agent , if the messages are , is

This is an incentive compatible mechanism with a balanced budget on and off
the equilibrium path. It is well known that, in this environment with quasi-
linear preferences, the Nash equilibrium public good outcome of the one-shot
game will be the unique, Pareto optimal level of public good. So, in particular,
in quasi-linear environments, the Nash-equilibrium outcome level of the public
good is independent of .
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1.2.4. Repeated play

1.3. The experimental data
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See also, Muench and Walker 1983 and Page and Tassier 2003 for further analysis of related
dynamics.

In a repeated play version of the public good allocation problem, it is assumed
that the public good lasts only for 1 period. Further, payoffs are additive over
time without discounting. So at each iteration , an amount of the public good
and taxes, are chosen. An agent�s payoff from the sequence
is

It can be shown, at least for agents following Cournot best response strate-
gies, that is important for the dynamic performance of the mechanism. Chen
and Tang (1998) derive a sufficient condition for the convergence of the mecha-
nism in repeated play in which agents play best responses given the messages of
the other agents. If agents use best responses in a sequence of repeated stage
GL mechanisms, messages will converge to Nash equilibrium if agents� strategies
are strategic complements; i.e., if in the stage game

This is true for quadratic preferences iff for all . Thus, the strategic
complementarity condition is satis�ed for a sufficiently high value of . For the
set of the parameter values in Chen and Tang 1998 which we use in this paper,

for all holds for values of greater than .

The major purpose of learning models is to explain the data from controlled
experiments in which human subjects are confronted with various mechanisms.
There are several data sources for the GL mechanism. One set is described in
Chen and Plott (1996). They conducted 7 experimental sessions each with
and . The second set is described in Arifovic and Ledyard (2003). It
was generated by us at the California Institute of Technology in April and May
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Our experimental design is very similar to Chen�s and Tang�s. However, we introduced two
modi�cations. First, in Chen and Tang, subjects could make only integer number choices. We
let the subjects make real number choices, with a two decimal points restriction. Second, we
added a calculator to the windows interface that allowed the subjects to calculate their potential
payoffs varying the size of and .

2002. We conducted experimental sessions with and 3 experimental
sessions with .

We are interested in several questions. Does convergence to the predicted
Nash Equilibrium messages occur? If so, how fast? There are many possible
measures of performance one might use to answer these questions. In this paper,
a convergence criterion is de�ned in terms of how close all agents� messages are
to the equilibrium messages. The convergence occurs in the period when the
difference between the equilibrium value and the value of the selected message of
each agent is less than or equal, in absolute terms, to ; i.e., when

for all . The period when the convergence criterion is ful�lled is called
, for run and given . The

average time of the �rst passage through equilibrium for runs, is given by:

(1.1)

We denote the standard deviation from this value, across the runs, by .
How is a Nash equilibrium after the �rst passage? We have created a

measure called the . It measures the frequencies
with which equilibrium values of messages are represented in the entire sets of
agents� response during periods after the �rst passage through equilibrium. Our
measure of the stability of equilibrium is

(1.2)

where is an index variable such that if , the message that
subject sent at experimental period is equal to and if ,
and is a total number of periods in a given experiment session. The average
over a total number of experimental sessions conducted for each and multiplied
by 100 is given by . We average over the remaining number of periods of a
particular session once the �rst passage through equilibrium is achieved.

Data from the experiments can be found in Table .

8



7

7

�

�

�
�

�

=

=
2

∑
∑

�� �� � �

1

2 ( )

2
2

2

2 2

�
∈

| �

� � � � �

|

c
�

�
s

h i
h

h i
h i

2. The Learning Models

�

= 50

=

=

= ( )

( ) = + ( 1)

( ) = ( ( )) ( )

= ( ( )) ( ) ( 2)
1

( )

Convergence Times and Stability of Equilibria

�nite

� observations T � E �

� , ,

�

� ,
� ,

a

�

�

s � ,�

X a ,� a N �

a A .

U a s V X a ,� T a ,� ,�

V X a ,� X a ,� z �/
N

N
a � �

U a s i a . s .

c
� T

�
s E

i
t

i
t

i
t

i
j,t

i m

N

i m �

N
i
t

i
t

i
t

i
j

i
t

i
j

i
t

i
j

i
t

i i
j
i
t i

i
j

i
t i

i
j

i
t
i
t

i
i
j

i
t

i
j

i
t

i
j

i
t

i
t

i i
j
i
t

i
j

i
t

This is an entirely retrospective and myopic view of the situation an agent faces. We ignore
for now intertemporal strategies (e.g., grim triggers, tit-for-tat, etc.), and other complexities
introduced by repeated play. We intend to address these issues in our future research.

( ) ( )
50 3 5.75 (4.42) 98.00 (1.00)
100 7 18.86 (12.034) 99.00 (1.00)
150 4 20.00 (17.20) 92.00 (4.00)

We will refer back to these data later. For now perhaps the most important
observations are that convergence occurs relatively rapidly on average, that the
fastest convergence occurs for and that beyond 50 a value for which the
strategic complementarity condition does not hold, convergence times increase in
. We want to see whether learning models can duplicate this type of behavior.

We look at three learning models that all have some features in common. At each
point in time t, they each involve a set of strategies, S , and a probability,

of playing each strategy from that set. That is, each model employs a
mixed strategy as a basic component. The probabilities, are based on a
cumulative, but depreciated, reckoning of the payoff that strategy would have
received at each past chance. The key computation is the (expected) payoff that
the alternative received when it was used or would have received if it had
been actually used, taking the behavior of other agents as given. The behavior

of the others, their messages, can be summarized in two statistics: ,

the mean value of messages of all the other agents, and , the
squared deviation from this mean. Given, an agent can compute

for each alternative Then they can also compute

is �s foregone utility for given that others played
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Notice that there is no need to calculate foregone utilities in this model.

Reinforcement Learning models trace their origins to the psychological learning
theories of Thurstone (1930), Bush and Mosteller (1955), and Luce (1959). They
have been adopted by many economists including Cross (1983), Roth and Erev
(1995, 1998), and Bender, Mookherjee, and Ray (1998). Their models assume
that players choose strategies probabilisticly. Players choose those strategies
that have done well in the past with higher probability in the future. Thus
strategies that achieve higher returns are �reinforced� and will be played with
a higher probability.

We follow Chen and Tang�s implementation of an adjusted RL algorithm.
First the continuous strategy space is discretized. A �nite set of active strate-
gies S is determined. This set will remain �xed throughout a run of the mech-
anism. In Chen and Tang�s experiments, subjects could choose an integer,

. Thus each agent had 51 active stage-game strategies. They
divided each choice number by and rounded it up to the nearest integer. This
way, the number of strategies was reduced to . In our simulations below we
will use both 11 and 51 as sizes for the sets S.

Each active strategy in S has a that depends on the past
payoffs earned by a given strategy and that determines the strategy�s probability
of being selected. Propensities of choice of different strategies are updated based
on the payoff earned in a round of the game when a particular strategy was used
and is otherwise left at its previous round level. Strategies are selected based
on their propensities. Those with higher propensities have higher probabilities
of being selected.

There is one main variable that is updated after each round of experience.
is the attractiveness of strategy j to i at t. begins with a prior

value, . These initial values can represent both prior game experience
and/or player predictions. For each agent, i, and each strategy j in S, let
denote the indicator function where is equal to 1 if alternative (strategy)

is chosen at round in the experiment, and otherwise. The propensity of
choice, begins at and is updated according to

(2.1)

where is a time/memory discount factor.
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2.2. Experience Weighted Attraction Learning
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If such a j does not exist then the probability is spread evenly across all the j such that

Agent selects strategy j at t+1 with probability:

(2.2)

for every and where is a total number of strategies in S. We will call
a focus parameter since it determines the extent to which the agent focuses on
choices with higher values of . If then for all and
there is no focus. As for the such that
for all . At there is total focus on the strategy with the largest value
of The free parameters of this model are and

EWA generalizes the RL model of the previous section by allowing agents to
weigh hypothetical payoffs as well as actual. We follow Camerer and Ho (1999)
to describe the version of EWA that we implement for this paper. First, the
continuous strategy space is discretized. A �nite set of active strategies S is
determined. In our simulations below we will use both 11 and 51 as sizes for the
sets S.

Each active strategy in S has an attraction, called the propensity of choice in
the RL model, that depends on the past payoffs earned by a given strategy and
that determines the strategy�s probability of being selected. The attractions of
different strategies are updated based on the possible payoff a strategy might
have earned had it been played. Strategies are selected based on their attraction.
Those with higher attractions have higher probabilities of being selected. There
are two main variables that are updated after each round of experience: ,
the number of �observation-equivalents� of past experience; and player
�s attraction to strategy after period has taken place. and begin
with some prior values, and . These initial values can represent both
prior game experience and/or player predictions.

The experience weight starts at and is updated according to
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for where is a depreciation rate or retrospective discount factor. This
means that

Note that for for all . And for .
Let

The attraction of a strategy for player at time is updated from
given according to

(2.3)

The parameter determines the extent to which hypothetical evaluations will
be used in computing attractions. If then no hypotheticals are used, just
as in RL. If then hypothetical evaluations are fully weighted. The factor

is a discount factor or decay rate, which depreciates the previous attraction.
is similar to in the RL model.
Agent selects strategy at t+1, in exactly the same way as with RL, with

probability:

(2.4)

The free parameters of this model are: and .
We end this section by pointing out the implications for a couple of speci�c

parameter values. If and then this is just the
RL model. If and then this is a best-reply model and all the
probability is put on the strategy that maximizes utility in response to .

IEL adds a new dimension to standard learning models by allowing agents to
vary their active strategy set in response to experience, to hypothetical evalu-
ations, and, occasionally, to pure random events (experimentation). What has
been �learned� by at time is summarized not in attraction weights but in the
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trembling hand mistake purposeful experimentation

directed experimentation

is a free parameter of the behavioral model. It can be loosely thought of as a measure of
the processing and/or memory capacity of the agent.

For the simulations in this paper we used a rate of experimentation . For the
random selection of the replacement, we used a normal density with the mean equal to the value
of the alternative, that was to be replaced by a �new� idea. The standard deviation was set
to .

There are at least two possible interpretations of our experimentation process. One is that
it is a and the other is that it is intended
to improve an agent�s payoff. We feel the latter interpretation is most appropriate because a
choice generated through experimentation is implemented only if it demonstrates a potential for
bringing a higher payoff. Thus, we call this method since only those
newly generated alternatives that appear promising are actually tried out.

set of active strategies. We follow Arifovic and Ledyard (2003) to describe the
version of IEL we use in this paper.

At the beginning of round , each agent has a collection
of active strategies. consists of alternatives where , for

In each round each agent computes a new . In order for
to accumulate and retain �good strategies�, there must be a way to try out
almost any strategy in the original large set, . Experimentation is
the way new strategies are added by IEL. But there must also be a way to purge
strategies from that are not likely to provide a good payoff. Replication is
the way old, low-payoff strategies are purged by IEL.

Experimentation works as follows. For each with probability
select one message at random from and replace with that message. This,
apparently random, experimentation introduces new alternatives that otherwise
might not ever have a chance to be tried. But, the result of this experimentation
is not as random as it looks. While it is true that an alternative is selected at
random from , we will see that the alternative selected must also have a
reasonably high foregone utility relative to the last period or future periods to
have any chance of ever being used.

After changing with experimentation, we further modify using repli-
cation to reinforce messages that would have been good choices in previous
rounds using hypothetical foregone utility computations. We allow potentially
better paying alternatives to replace those that might pay less. For ,
we let be chosen as follows. Pick two members of randomly (with

13
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We could have used the from reinforcement learning or the from EWA in place
of

Using to make sure probabilities are positive has another helpful effect. when becomes
more negative, more probability is assigned, ceteris paribus, to k with large and less is
assigned to k with very negative

One might also consider other things to be free parameters such as the method of initially

uniform probability) with replacement. Let these be and Then let

Replication at favors alternatives with a lot of replicates at and alternatives
that would have paid well at if they had been used. So it is a process with a form
of averaging over past periods - if the actual messages of others have provided
a favorable situation for an alternative on average then that alternative will
tend to accumulate replicates in (it is fondly remembered), and thus will be
more likely to be actually used in future moves. If the responses of the others
are fairly stable, then over time, the sets will become more homogeneous as
most alternatives become replicates of the best performing alternative.

Given , the selection probabilities are updated by letting

(2.5)

for all and and where

Over time, copies of a (hypothetically) successful strategy accrue in the active
strategy set and this increases the probability that strategy will be selected
even if its utility is only slightly larger than some other. The reader may be
curious why we used the expression in ( 2.5) instead of the more common one in
(2.4). It turns out that based on the extensive simulation in Arifovic and Led-
yard (2003) it really does not matter much which we choose. For the simulation
results we report below, we used the set of parameter values that, at 95% con-
�dence interval, resulted in the mean value and the variance of the time of �rst
passage through equilibrium closest to the experiments with human subjects.
The expression (2.5) was part of that accepted model. So we carried it over to
here.

The free parameters for this model are: and
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3. Simulation Results

= 50 100 150
10 000

= 0 006 = 0 8

= 11

3.1. The Basics: convergence and stability

convergence times and equilibrium stability.

3.1.1. Reinforcement Learning

seeding the form of the probability used in selecting messages during replication, and the
way we do random selection from at the end. In Arifovic and Ledyard (2003) we report on a
extensive list of robustness tests we did in which these were all varied in signi�cant ways. The
performance of the algorithm did not seem to depend too seriously on the particular way.

We should be clear on this. Passing this test is a necessary condition for saying the rule
behaves like humans do. Passing the test is certainly not sufficient for such a conclusion..

We are, ultimately, interested in discovering which, if any, of the three learning
rules provides a good model of human subject behavior in experiments. Our
initial test for each is something we consider a minimal competency test. We
ask whether the learning rules exhibit, in simulations, the same convergence
behavior as human subjects.

For each of the three learning rules and each of the three values of ,
we ran 100 simulations. Each simulation was allowed to run for periods.
We also carried out a number of simulations with variations in the parameters
to check that our results were robust to our choices. For our robustness simula-
tions we also used 100 runs with 10,000 periods. These are described below in
the appendix. Rather than report all data, we use several summary statistics
to characterize the behavior of the simulations. The primary measures provided
are These were de�ned ear-
lier in the section on experimental data. The average time to convergence, and
its variance, were de�ned above in (1.1) and our measure of equilibrium stability
was de�ned in (1.2). We also present �gures that demonstrate the evolution of
these measures over 200 periods.

We will �rst provide a separate analysis of each rule and then conclude with
some comparisons and explanations.

Chen and Tang found the set of the RL parameters that gave the best �t with
the experimental data using a grid search, were , and . We con-
ducted our baseline RL simulations using those parameter values and a strategy
space size For these values, RL strategies did converge to the Nash
Equilibrium. However, the amount of time it takes for this to happen is two
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Table 2
Convergence Times and Stability of Equilibria

RL with ,

For , the values of equilibrium messages are: , , ,
, and . Given that, according to our convergence criterion, equilibrium is

achieved if the difference between actual and equilibrium messages is less or equal to one, the
values of messages of all 5 agents that are equal to 1 would satisfy the convergence criterion.

orders of magnitude larger than the time it takes in the experiments. In Table
we report the average convergence times and standard deviations for each of

the simulations. The column reports the number of simulations,
out of total of 100, that converged for each value of within 10,000 periods.
Averages are then computed using the data only from those simulations
that converged. We extended the simulation time for another 100 periods in
those simulations where we observed convergence and collected data on individ-
ual agents� selection of messages. We use that data to compute the index of
equilibrium stability, also reported in Table 2.

observations ( ) ( )
50 93/100 3281.55(2365.14) 96.49(3.71)
100 98/100 1686.78(1712.44) 97.04(2.74)
150 100 1665.43(1829.24) 97.73(1.23)

In �gure 1, we present the behavior of actual messages chosen by agents over
the �rst periods, for , and . Agents� messages
�uctuate between different values within the �rst periods. Before period

, agent settles on , agent on and agent on .
The simulation reaches equilibrium values of messages for all of the agents in
period .

[insert �g 1 here]

It seems pretty clear that, although RL does eventually converge to equilib-
rium behavior, it does not look anything like the behavior of laboratory subjects.
The time RL takes is two orders of magnitude greater than humans.
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These robustness simulations are only summarized here. We provide considerably more
detail in the Appendix.

In fact increasing the size of the strategy space might also cause the equilibrium strategy
to become one of the possible choices. For example, for an equally partitioned strategy
space of size will not include the equilibrium strategy for those mechanisms.

To make sure that this very long average time to convergence
is not just the result of a strange choice of parameters, we did a number of
simulations across systematic variations in and The basic �nding did not
change much. An increase in to leaves only 1/100 simulations converging.
Lowering below slows things down relative to We also checked
values of and and found in both cases that no convergence occurred.
For a wide range of parameters, RL converges (or learns) a lot slower than
experimental subjects do in this experimental environment.

Another robustness test involved increasing the size of the message space. It
was not obvious to us, initially, how such an increase would affect average times
to convergence. The increase in size could slow things down by creating many
more alternatives that need to be evaluated. On the other hand, by including
more strategies �near� the equilibrium strategy , it might be possible for the
learning rule to focus more effort in that neighborhood. As it turns out the
former effect dominates the latter for RL. When the strategy space was increased
to , none of the simulations that we conducted using the RL algorithm
converged to the Nash equilibrium values within periods. Figure shows
the messages selected by agents over the �rst periods for ,
and in a typical one of our simulations. In this simulation, after initial
adjustment, agent settles to selecting the value of 1.2. Messages selected by
agent �uctuate widely, in the range from -4 to 5. After a lot of �uctuation,
agent settles on the value of 1.6, agent to 1.8 and agent to . However,
an examination of the entire simulation ( periods) indicates that there is
no convergence to equilibrium or non-equilibrium values. For all 5 agents, there
are recurrent intervals of wide �uctuations in the values of selected messages,
followed by temporary settlement to speci�c values.

[insert �g 2 here]

To check the robustness of these results for , we did a number of
simulations across systematic variations in and The basic �ndings did not
change. We used 3 different values of the parameter , 0.9, 0.7, and 0.5 with

None of the simulations resulted in convergence to equilibrium within
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3.1.2. Experience Weighted Attraction Learning

Table 3
Convergence Times and Stability of Equilibria

EWA with ,

= 0 06 = 0 6

= 51

= 961 946 935 926
= 1 040 1 005 986 991 = 0 73 413 547 = 508 182 646 218
(0) = 19 63 18 391 15 276 9 937

= 0 35 = 10 = 0 9 = 0 95
= 0 9 = 11

= 50 100 150

= 11 = 0 9 = 0 9 = 0 35

�

= 100
150

= 50

We initially chose is accord with the numbers above. But then as we did our
robustness studies, we found that, at least in the context of repeated GL games, EWA performed
much closer to humans when We decided to go with the parameter values that performed
better. The appendix has some of the comparative data in Table 15 across alternative values of

10,000 periods. We also used values of and . None of these
simulations resulted in the algorithm�s convergence.

The conclusion is that larger strategy spaces lead to even slower average
times to convergence for RL. is too big for this learning rule to process
in a timely fashion.

Camerer and Ho (1999) report on various estimation results that give the best �t
to experimental data for different games. They report values ,

, , ,
. For our baseline simulations with EWA,

we used the parameter values of , , , , and
. We also used . For these values, we observed relatively fast

convergence for . We report the average time of �rst passage
through equilibrium and standard deviations in table 3.

simulations ( )
50 100 12.1(3.64)
100 100 12.9(6.98)
150 100 20.26(16.53)

In �gure 3, we report the actual messages selected by agents over the �rst
200 periods. Agents� messages reach the equilibrium value relatively fast, and
by period 100, all of the agents are playing only the equilibrium strategies.

[insert �g 3]

EWA does converge to equilibrium strategies and, at least for and
does so in average times that look a lot like those generated by humans.

For however, EWA appears to be slower than does the human data.
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These are summarized here and provided in more detail in the Appendix

Robustness

Table 4
Convergence Times and Stability of Equilibria

EWA with

To see whether there was anything special about these results,
we did a number of simulations across systematic variations in and
Lower values of resulted in a substantial decrease in the number of simulations
that converged to equilibrium. A ten-fold decrease in the value of (0.035)
did not have an impact on the convergence times of simulations with .
However, it did result in a tremendous increase in the number of simulations
that converged for lower value of Moving up from or down from
slowed things down Dropping to .5 or less led to no simulations converging.
Finally to test the effect of a change in the value of , we tried a ten times
lower value of This did not seem to affect the algorithm�s behavior.

As with RL we wanted to see what the effect of increasing the size of the
message space would be. Unfortunately, when the strategy space is increased to

, only a small number of EWA simulations converged to the equilibrium
messages in 10,000 periods. We report the average convergence times and our
measure of stability of equilibrium in table .

simulations ( ) ( )
50 0
100 4/100 31.50 (2.89) 99.95(0.1)
150 1/100 31 100 (00)

In �gure , we report the actual messages selected by agents over the �rst
periods. Agent 1 is the only one that starts playing the equilibrium strategy,

while the other 4 converge very quickly (period 40) to non-equilibrium values,
, , , , and . All the agents remain

with these selected messages until the end of simulation (period 10,000).

[insert �g 4]

The conclusion for EWA is the same as that for RL - larger strategy spaces
lead to slower convergence. is too big for this learning rule to process
in a timely fashion.
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These results are taken from Arifovic and Ledyard (2003).

3.1.3. Individual Evolutionary Learning

Table 5 Convergence Times and Stability of Equilibria
IEL with

Robustness

Arifovic and Ledyard (2003) found that the parameters that gave the best �t,
at a 95% con�dence interval, resulted in the mean value and the variance of the
time of �rst passage through equilibrium closest to the experiments with human
subjects. These values are and with experimentation process
drawn from the normal distribution. In table 5, we report the values of the
average time of �rst passage through equilibrium (and its standard deviation)
and the stability of equilibrium (and its standard deviation) for the values of

, and .

simulations ( ) ( )
50 10000 13.48 (5.76) 95.31 (1.21)
100 10000 19.65 (10.52) 95.00 (1.74)
150 10000 38.89 (22.81) 94.72 (2.09)

Figure reports the behavior of the messages selected by players for the
�rst 100 periods in a simulation with . Relatively fast convergence to
the equilibrium values occurs. Occasional out-of-equilibrium values are observed
as a result of continuous effects of experimentation. However, the stability of
equilibria, once reached is always above 95 %.

[insert �gure 5 here]

IEL does converge to equilibrium strategies and, at least for and ,
does so in average times that look a lot like those generated by humans. For

however, IEL appears to be slower than does the human data.

We did a signi�cant number of alternative simulations with dif-
ferent parameter values, as well as changed the details of the model�s updating
scheme. These are reported in detail in Arifovic and Ledyard (2003). The model
always yielded the same pattern of convergence to Nash equilibrium where the
time to convergence depended on the values of the parameter . It always yielded
a U-shaped curve (in of times to convergence, where different parameter sets
resulted in higher or lower values of the average time of �rst passage through
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3.2. Summary to here

Table 6 Summary of Average Convergence Times

3.3. A Deeper Look: other measures of convergence

Experiments with human subjects also showed fastest convergence for .
This suggests that one might always be able to �nd a value for ex post that explains the

data. We do not feel that this is enough. It is important to be able to choose ex ante if we
want to predict behavior in the lab.

equilibrium. The range of values of between 40 and 50 always resulted in the
minimum time to convergence.

At this point we can make several observations about the conformance of the
three learning rules with human behavior in the GL mechanisms in the quadratic
environment we have used. Numerical comparisons are provided in Table 6.
RL appears to have failed our minimum competency test - average times to
convergence are not even close to those of humans, no matter what the size of
the strategy space. IEL seems to pass the test. EWA provides us with a bit of
a dilemma. It appears to pass the test when but not when
We need to look deeper to see what is really happening for the larger discretized
strategy space.

Experiment RL (11) RL (51) EWA (11) EWA (51) IEL
50 5.75 3282 12.1(4) 13.48(6)
100 18.86 1687 12.9(7) 19.65(10)
150 20.00 1665 20.16(17) 38.89(22)

: Did Not Converge in most of the simulations

We have been focused on the convergence of realized strategy choices to equi-
librium pure strategies. This measure, however, ignores what is going on with
the rest of the active strategies. If convergence does not occur, or does not oc-
cur as rapidly as in the human experiments, it might be because of the various
randomizations that the learning models employ. That is, the mixed strategies
could be converging to �reasonable� strategies, even if the realizations were off.
We would not want to reject a model of behavior for which this was true
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3.3.1. Difference in mixed strategy distributions

Reinforcement Learning

A �nite mixed strategy takes on positive values at only a �nite number of

If the cumulative distributions were piece-wise continuous the distance measure would be
the Stieljes intergral the area between the two distributions. In
the data below, the distances between the x with positive probability are uniform so Z is the
appropriate normalization constant. This is called a pseudo-metric since does not
imply as is required of a metric.

To check out how the learning rules are doing in the mixed strategy space, we
consider the entire cumulative distribution of the mixed strategies being played.
In particular, we compute a distance between the current mixed strategy, and
the equilibrium strategy, . The cumulative distribution for any �nite mixed
strategy on the real line is given by .
We use the following pseudo-metric:

where

and

elements in Z.

Since we observed convergence to equilibrium for EWA with and for
IEL, we should also observe the difference in cumulative strategy distributions
converge to zero. The interesting question is what happens for RL, for both
strategy space sizes, and for EWA with a strategy space size of We look at
those now.

In �gure we present our distance measure for RL
with a strategy space size of . Until period 200 this measure stays above
zero for all of the agents except agent 5. For this agent, the measure drops to 0
fairly quickly, after period 60, and remains there until the end of the simulation.
Other agents� measures remain at positive values until the convergence, at period

occurs. Between periods and this measure remains at the
values close to 0 most of the time. In Figure 7 we show the same measure for
RL with . Until period 200 this measure stays above zero for all of the
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Experience Weighted Attraction Learning

3.3.2. Efficiency

agents. Only the value for agent 1 takes a really small positive value. Similarly
as with the messages that agents selected over the same period of time, the
pattern that this measure displays are recurrent intervals of �uctuations followed
by temporary settlement to the values in the range between and .

[insert �g 6]
[insert �g 7]

This con�rms the view that convergence is just really slow for RL.

In �gure , we show the dif-
ference in cumulative distributions for EWA with This distance takes
a zero value around the time when agents strategies converge to equilibrium
values, and when their probabilities of playing equilibrium strategies also go to
1. At that point, differences in cumulative distributions go to zero. This as it
should be since convergence to equilibrium implies convergence to zero for the
difference in cumulative distributions. In �gure 9, we show the same measure
for . This �gure is interesting as it demonstrates that the difference in
cumulative distributions converge to positive values close to zero. (For agent 1
who converges to playing an equilibrium strategy it does go to 0.) These values
remain unchanged until the end of the simulation.

[insert �g 8]
[insert �g 9]

So even though EWA is not converging to the equilibrium, it is getting it
almost right.

It should be realized that, even if convergence is not occurring in the pure
strategy space or in the mixed strategy space, it is possible that the losses
sustained by the agents might not be very large - that convergence in utility
is occurring even if convergence in mixed strategies is not. Because we are
in a quasi-linear environment and because we are using the GL mechanism,
the maximum total payoff to the agents occurs at the Nash equilibrium. A
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standard measure of how far off the maximum joint payoff the agents are is
called and it is computed in the following way:

(3.1)

where is the utility of agent at time that resulted from her actual
choice, and the actual choices of the others, is the utility of agent

if all agents, including , send equilibrium messages. For our environments,
so efficiency may be negative but it is always less than or equal

to 1.
If strategies are converging to Nash Equilibrium, then by design efficiency

is converging to 1. So again the interesting cases are for RL for both strategy
space sizes and for EWA for a strategy space size of We look at those now.

In Figure we display the value of efficiency for
a typical simulation of RL with .

[insert �g 10]

This looks pretty good in that there are a lot of 1.0�s although there are
occasional drops down to 0.7 or lower. Efficiency is lower on average and �uctu-
ates more widely. Over the span of 200 moves, the average level of efficiency is
0.78 with a standard deviation of 0.45. Of course, in the �rst 50 moves (which
are important for comparison with the experimental data) the average efficiency
is only 0.52.

However, when we look at the same measure for we get a much
different story. Efficiency is lower on average and �uctuates more widely. Even
after 200 moves, there is no apparent settling down in the �uctuations. Over the
span of 200 moves, the average efficiency is 0.61 and the standard deviation is
0.56. Thus, as the size of the strategy space increases, RL begins to look less and
less like the experimental data. These �uctuations are the result of �uctuations
in individual messages, as demonstrated in �gure 2. Again, the same pattern
(or lack of it?) characterizes simulations of RL when .

[insert �g 11]
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Experience Weighted Attraction Learning

3.4. Summary

See the appendix for details.
We do not have a good comparison to the human data for the rates of convergence of

efficiency. That will be done in future work.

In �gure we report the
measure of efficiency for a typical simulation for EWA with . As the
simulation converges to equilibrium values relatively fast, the efficiency reaches
the value of 1 after period and remains at that level until period as
expected. We report the behavior of the efficiency computed for EWA and

in �gure . After initial adjustment, convergence to the value of
occurs. This is a simulation during which 1 out of 5 agents converge to

equilibrium messages. In other simulations with around .9, more agents
converge yielding efficiencies ranging from .97 to 1. This mirrors the observation
that EWA is getting close to but not always converging to equilibrium. The large
strategy space is causing trouble, although not nearly as much as it does for RL.

[insert �g 12]
[insert �g 13]

Our goal was to study what happens to some learning rules when we apply
them to mechanisms with a continuum of strategies - a scaling up of the size of
the problem they are asked to deal with. We have looked at three: Reinforce-
ment Learning, Experience Weighted Attraction, and Individual Evolutionary
Learning. We ask how they compare to human data on the same problem.

We found that RL is not able to handle the larger problem. RL is simply
much slower in evaluating strategies than humans are.

We found that EWA did pretty well. When we used a discretized strategy
space of 11 options, EWA did indeed converge to equilibrium in a reasonable
amount of time, especially for and But when we increased the
discretized space to options, EWA rarely converged. It too is apparently
challenged by a larger strategy space. However, when we looked deeper we found
that although strict convergence in pure strategies rarely occurred, convergence
in mixed strategies and efficiency did seem to be taking place.

When we look across the three rules (focusing on the data) and the
human data (see Table 6), we see that, for EWA and IEL are close in
performance and closer to the human data than RL. For larger EWA
seems to be closer to the human data that IEL and for IEL seems
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4. Conclusions and Final Thoughts

the extensive use of hypotheticals.

It is interesting to note that Josephsen (2001) found the most evolutionarily stable rule had
its maximum value.

to perform closer to the human data than does EWA. Both however easily lie
within two standard deviations of the human data. Clearly, more work needs to
be done before making any more of these observations.

In three different repeated Groves-Ledyard mechanisms, humans converge pretty
fast to Nash Equilibrium strategies (taking from 5-20 iterations). Once they get
there, they stay (92-98% of the next plays are also near equilibrium). The three
learning rules we studied (RL, EWA, and IEL) match that performance with
varying degrees of success. Reinforcement Learning does not match it at all.
Experience Weighted Attraction Learning does well for a small strategy space
but not for a large space. Individual Evolutionary Learning seems to match
pretty well. But all the rules seem to be slower than humans. What explains
the variance in performance? Can we �nd any hints in the data for improvement?

We believe that the key to matching the performance of humans in games
with large strategy sets is the quick (endogenous) discovery of �good� strategies
and the quick discarding of �bad� strategies. One key to the quick discovery of
good strategies from a large set is If
one only evaluates one strategy per round, then it takes a while to learn which
strategies might work. In 20 rounds, the maximum time it takes humans to
converge on average, with 51 strategies and a uniform starting probability of
choice, you will only have a probability of .4 of trying the Nash Equilibrium just
once. With 5 people, the probability of all getting near is extremely low. It does
not improve much even if the strategy space size is 11. Using hypotheticals, one
evaluates every strategy in every round. With 11 strategies, the �rst order effect
is to reduce the rounds needed to converge by an order of magnitude. But there
must be a second order effect (since EWA is two orders of magnitude faster
than RL) and we conjecture this arises because all 5 are moving faster towards
the equilibrium and reinforcing each other. Not only is the use of hypotheticals
supported by the relative performance of EWA and RL, it is also supported
by the robustness tests we did on EWA. There the parameter determines the
weight given to hypotheticals. We saw that higher led to faster convergence -
convergence that looked more like the human data .
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focus
on good ones when you �nd them

the ability to forget history

It is our belief, based on the simulations in this paper, that the reason EWA
and IEL do as well as they do, and better than RL, relative to human data is
their use of hypotheticals.

It is our belief, based on the simulations in this paper, that the reason IEL
does better than EWA, especially when a strategy space of size 51 is used for
EWA, is its ability to act as if it is adjusting the focus parameter,

A second key to the quick discovery of good strategies is the ability to
. Each learning rule uses a probabilistic

choice process. For RL and EWA, a parameter determines how important
the attraction or utility of a strategy is in this choice. The higher , the more
important the attraction is. So one might expect that very high would be
good. But there is a down-side to that choice. High inhibits the ability of
the rule to actually try a strategy with a low attraction and, thereby, verify its
performance is as predicted by the hypothetical. If it does not do such checking,
it will converge but perhaps not to the Nash Equilibrium. So, in the RL or
EWA models, low allow full analysis of the strategy space but create slow
convergence by forcing consideration and use of provably bad strategies. High

speed convergence but inhibit full analysis of the strategy space. The larger
the strategy space is, the worse these effects are.

In the IEL model, appears to play no role. In the robustness tests done
in Arifovic and Ledyard (2003) we found that varying led to virtually no
change in the average times to convergence. The reason is straight-forward. By
maintaining an active set of strategies, as opposed to all strategies, IEL forces
a probability zero of choice on those not included. That is, if a strategy is
discarded it is never tried. This is the equivalent of a very large especially
when the active strategy set becomes populated with many copies of a very few
good strategies. But initially, the active strategy set can have many different
strategies and, even when there are few strategies, experimentation offers the
possibility to try all strategies. This is the equivalent of a very small So early
on, and randomly later on, IEL acts as if it is using probabilistic choice with a
small thus sampling lots of possible strategies. Later on, and pretty soon too,
IEL acts as if it is using probabilistic choice with a very large thus focusing
on provenly good strategies.

over time.
Another key to convergence is once it has

been absorbed. This requires a delicate balance in the choice of for RL and
the choice of for EWA. Too high and convergence is slowed down by blind
allegiance to the past. Too low and convergence is slowed down because the past
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the active strategy set is chosen endogenously over
time

This also means that its �size� - the number of distinct strategies - is chosen over time.

It is our belief, based on the simulations in this paper, that the reason IEL
does better than EWA (and RL) is its ability to selectively remember and discard
history.

It is our belief, based on the simulations in this paper, that the reason IEL
does better than EWA (and RL) is its ability to endogenously adjust the number
and content of the active strategy set.

is forgotten before it is fully used. Further, this memory parameter is applied
uniformly to all strategies. As we saw, and seem to work best
respectively for RL and EWA in these games. IEU deals with this issue through
its process of tournament replication. By randomly selecting challengers to pair
off against each other, those strategies which historically have been successful,
actually or hypothetically, have a high chance to stay around, while those which
have historically been unsuccessful will disappear. Thus only the important
parts of history are preserved.

Finally, playing a role in all of this is the size of the strategy space. We have
forced RL and EWA to pick the size and content of active strategies ex ante and
exogenously. We found that the performance of these learning rules relative to
the human data deteriorated as the size of the active strategy space grew. This
is at odds with the desire to have a �ner strategy grid to better approximate
Nash Equilibrium strategies. IEU chooses the size ex ante and exogenously,
but the content of

. By experimentation (mutation), all strategies in the continuum have a
chance to be admitted and retained in this set.

So it seems to us that good learning rules, rules that behave as human
subjects do, will have at least four components: (1) the use of hypotheticals
to create history, (2) the ability to focus only on what is important, (3) the
ability to forget history when it is no longer important, and (4) the ability to
try new things. RL has almost none of these characteristics, EWA and IEl
have some of them. Further research is necessary, however, before accepting
any particular rule as the best. For example, it is likely that something else -
such as expectations formation and teaching - will be needed to explain repeated
cooperation in games in which the Nash Equilibrium is not Pareto-Optimal.
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5.1. Robustness of Reinforcement Learning simulations

Table 7 RL with = 11,

5.2. Robustness of Experience Weighted Attraction Learning simula-
tions

Here we report more of the details of the simulations we ran, in order to check
the robustness of our results to changes in parameters of the models.

We �rst report on the behavior of RL with when the value of is
varied. For , 1 out of 100 simulations converged to equilibrium (and
that one admittedly fast, in 40 periods). However, no simulation converged
to equilibrium for , and again only one did for , in periods.
Decreasing the value of by 0.1, to 0.7 resulted in worse performance (relative to
simulations with ) in terms of the number of simulations that converged
to equilibrium. These results are reported in table 7.

observations ( ) ( )
50 0
100 85 1686.78(1712.44) 97.04(2.74)
150 100 794.53(821.03) 79.02(13.64)

Further decreases of did not result in further improvement of the algorith-
m�s performance. In fact, when the value of was set to 0.5, no simulations
resulted in the convergence in 10,000 periods. Regarding the variations in the
value of the sensitivity parameter , in addition to , we conducted
sets of simulations with two other values, , and . None of these
simulations converged to equilibrium in 10,000 periods.

We also tested robustness of the results for but, as reported in the
text, nothing we did resulted in convergence to equilibrium for and

In table , we report the results of simulations for the values of equal to 0.3,
0.5, and 0.7. (Note our baseline simulations were conducted with equal to 0.9.)
We observed that really high values of are required in order for convergence
to Nash equilibrium to take place. Lower values of resulted in a substantial
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Table 8
Convergence Times and Stability of Equilibria
EWA with , , different values of

Table 9
Convergence Times and Stability of Equilibria

EWA with ,
Change in the value of

decrease in the number of simulations that converged to equilibrium. We report
the results for .

simulations ( ) ( )
0.3 2/100 27.50(20.51) 99.95(0.21)
0.5 7100 6.71 (1.80) 100 (0.00)
0.7 16/100 8.19 (4.83) 99.99(0.05)

A ten-fold decrease in the value of (0.035) did not have an impact on
the convergence times of simulations with . However, it did result in a
tremendous increase of the number of simulations that converged for lower value
of . In table 9, we report the results for , 0.7, and 0.5 combined with 3
values of , 50, 100, and 150.

,

simulations ( ) ( )
50 100 72.64(6.78) 96.86(0.83)
100 100 47.74(12.71) 98.37(0.59)
150 100 64.62(61.86) 99.10(0.47)

simulations ( ) ( )
50 96/100 66.35(24.92) 99.31(0.42)
100 94/100 38.50(41.15)) 99.47(0.35)
150 76/100 50.99(38.33) 99.62(0.36)

simulations ( ) ( )
50 32/100 62.16(21.74) 99.72(0.26)
100 43/100 44.95(13.38) 99.73(0.29)
150 37/100 40.81(13.38) 99.98(0.05)
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Table 10
Convergence Times and Stability of Equilibria

EWA with ,
Change in the value of

Finally, a change in the value of , we tried a ten times lower values of
did not seem to affect the algorithm�s behavior. (This is consistent with

similar results reported in the literature regarding the robustness of the model
to changes in the value of .) The results of our simulations are reported in
table .

,

simulations ( ) ( )
50 87/100 25.97(31.77 99.95(0.10)
100 100 38.50(41.15)) 99.98(0.06)
150 89/100 100.69(133.65) 99.98(0.05)

In case of EWA and , we observed no convergence in simulations
conducted with lower values of (0.3, .4, 0.5, .6, .7, and .8) for , 100 and
150. This con�rms the result, obtained in the simulations with , that
a relatively high value of (much higher than what has been reported in the
literature) is required for the EWA convergence in the GL environment. This
implies that a very high weight has to be placed on hypothetical payoffs if the
convergence to equilibrium is to be achieved.

A closer look at the behavior exhibited in the simulations with lower values
of reveals that in all of the simulations, agents do settle on particular messages
whose probability of being selected goes to 1. However, for and , none
of the agents settle on equilibrium messages. This also results in lower efficiency
observed in these simulations. However, for higher values of equal to 0.6 and
0.7 there are simulations where or out of agents settle on equilibrium
messages (and this results in higher efficiency). Finally, for we observe
simulations where out of agents that settle to equilibrium messages.

In table 11 we report the actual values of messages for selected simulations
for , 0.4, 0.5, 0.6, 0.7, and 0.8. The table also reports the value of
efficiency at the end of all of these simulations. (The values were taken from the
last period, r=10,000, of each simulation). The data show that the simulations
do converge to the relatively high values of efficiency even when none of the
agents plays equilibrium messages, the values are (at least for the selected set
of simulations) above 97%. Efficiency increases to 99% when 2 out of 5 agents
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Table 11
Messages, payoffs, and efficiency for different levels of

EWA with

Table 9

play equilibrium messages, and reaches (almost) 100% when 3 out of 5 agents
converge to equilibrium messages.

( ) ( ) ( ) ( ) ( )
0.3 1.2 (230.09) 1.6 (192.75) -0.4 (125.25) 0.8 (226.69) 0.6 (229.97)
0.4 1.4 (237.96) 2.0 (166.08) - 0.4 (128.72) 0.8 (250.96) 0.4 (237.84)
0.5 1.4 (209.16) 1.8 (209.68) 1.2 (207.12) 1.2 (206.16) 0.6 (172.64)
0.6 1.6 (190.83) 1.0 (231.81) 1.2 (202.85) 1.2 (203.49) 0.8 192.51)
0.7 1.2 (202.83) 0.8 (228.61) 0.8 (200.05) 1.0 (201.09) 1.0 (201.573)
0.8 1.0 (206.33) 0.8 (228.00) 1.0 (201.33) 1.2 (198.00) 1.0 (201.33)

, cont.d

efficiency
0.3 1004.76 0.971
0.4 1021.56 0.987
0.5 1004.76 0.971
0.6 1021.56 0.987
0.7 1034.16 0.999
0.8 1035 1.000

In table we report the equilibrium messages and payoffs for individual
agents and the sum of equilibrium payoffs for the purpose of comparing it with
the data in table . This comparison reveals that in thee simulations there is
always or agents with payoffs higher than their equilibrium payoffs, while
the est of the agents end up with payoffs lower than their equilibrium ones.
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Table 12
Equilibrium messages and payoffs in case of

Table 13
Convergence Times and Stability of Equilibria

EWA with and

( ) ( ) ( ) ( ) (
1(205) 1 (230) 1 (200) 1 (200) 1 (200) 1035

A ten-fold decrease in the value of from 0.35 to 0.035 resulted in a slow
down of the time to convergence. We conducted simulations for , 100
and 150. A ten fold decrease in the value of the response sensitivity parameter
resulted in a substantial increase in the number of simulations that converged to
equilibrium. As mentioned above, this low value of slowed down convergence
of EWA with resulting in convergence times that were longer than
what the experimental evidence suggests. However, in the case of EWA with

, this low value helps the algorithm achieve convergence in a much larger
number of simulations. However, convergence times are still much longer than
those observed in the experiments. We report the average convergence times
and measures of stability in table .

simulations ( ) ( )
50 0
100 68/100 1228.69 (1009.61) 89.49 (1.63)
150 41/100 967.59 (1157.71) 91.54 (1.42)

Combinations of a decreased value of and values of less than 0.9 did not
result in an increase in the number of simulations that converged to equilibrium.

We also examined the sensitivity of the algorithm to the increases in the
value of . We simulated the model for the values of equal to 2, 5, 10, 15,
ad 18 (keeping the other parameter values equal to our baseline setting) and for

. None of these simulations converged to the Nash equilibrium.
Decreasing the value of from the baseline value of 10 to 1 did not result

in a signi�cant change in terms of the ability of the algorithm to converge. Only
one simulation converged for , 3 converged for , and 1 converged
for . Other studies also suggest that differences in this value do not have
signi�cant effects on the EWA�s behavior. We report the results in table 14.
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Table 14
Convergence Times and Stability of Equilibria

EWA with and and

Table 15
Convergence Times and Stability of Equilibria
EWA with and

simulations ( ) ( )
50 1/100 38 100 (0)
100 3/100 32.67 (2.08) 99.93 (0.12)
150 1/100 31 100 (0.00)

Finally, we varied above and below the basic value of The results are
displayed in Table 15. As one can see, there is relatively difference between the
values of 0.7 and 0.9. But both the increase to 0.99 and decreases to 0.5 and
below slow things down.

simulations ( )
.99 100 25.09(28.68)
100 100 32.67 (2.08)
.9 100 12.9(6.98)
.7 100 12.37(4.46)
.5 0/100 DNC
.3 0/100 DNC

DNC =Did Not Converge in 100 trials
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Figure 1. Behavior of selected messages for RL algorithm and S=11
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Figure 2. Behavior of selected messages for RL, |S| = 51
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Figure 3. Behavior of selected messages for EWA, |S| = 11
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Figure 4. Behavior of selected messages for EWA, |S| = 51
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Figure 5. Behavior of selected messages for IEL
J=100, pex = 0.033, normal distribution
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Figure 6. Difference in cumulative probability distributions for RL, |S| = 11
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Figure 7. Difference in cumulative probability distributions for RL algorithm, |S| = 51
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Figure 8. Difference in cumulative probability distributions for EWA, |S| = 11
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Figure 9. Difference in cumulative probability distributions for EWA , |S| = 51
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Figure 10. Efficiency for RL algorithm, |S| = 11
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Figure 11. Efficiency for RL algorithm, |S| = 51
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Figure 12. Efficiency for EWA, |S| = 11
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Figure 13. Efficiency for EWA, |S| = 51
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